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The autonomous cycle of near-wall turbulence
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Numerical experiments on modified turbulent channels at moderate Reynolds num-
bers are used to differentiate between several possible regeneration cycles for the
turbulent fluctuations in wall-bounded flows. It is shown that a cycle exists which is
local to the near-wall region and does not depend on the outer flow. It involves the
formation of velocity streaks from the advection of the mean profile by streamwise
vortices, and the generation of the vortices from the instability of the streaks. In-
terrupting any of those processes leads to laminarization. The presence of the wall
seems to be only necessary to maintain the mean shear. The generation of secondary
vorticity at the wall is shown to be of little importance in turbulence generation
under natural circumstances. Inhibiting its production increases turbulence intensity
and drag.

1. Introduction
Numerical experiments have radically changed the study of turbulence in the last

few decades. It is now understood that careful direct numerical simulations yield
results that are indistinguishable from physical experiments, while the observational
capabilities are generally broader in numerics than in the laboratory (Moin & Mahesh
1998). Much structural information has been gained in this way for flows that had
resisted analysis for a long time. It is part of the purpose of this paper to call attention
to a feature of numerical experiments which is in some cases even more useful than
the possibility of better diagnostics. It is the ability to simulate ‘wrong’ physics.

The second goal of the paper is to clarify some aspects of the dynamics of near-
wall turbulence. Turbulent flows are complex systems in which many phenomena
interact with each other. Kinematic studies catalogue the structures involved, which
in turn allows informed speculation about their interactions. Statistical analysis of the
frequency of the different structures constrains these dynamical models, but it is often
difficult to distinguish between the different effects. Statistics of processes are harder
to obtain than those of structures, because of the extra dimensionality implied by the
time evolution. A consequence is that, while our knowledge of structures is generally
well founded, that of processes is based more on plausible conceptual models than
on statistics.

One possibility is to manipulate the flow so that the different candidate processes
are either enhanced or suppressed, and to observe the effect of those modifications
on the dynamics. Processes whose modification leads to substantial changes in the
flow would in that way be shown to be important, and vice versa. It is unfortunately
often impossible in physical situations to manipulate the flow in this way, but nu-
merical experiments have fewer restrictions. The equations of motions, the boundary
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conditions, and the initial state can be changed arbitrarily so as to test which of them
are dominant in a given case. In this paper we give several examples of the use of
modified numerical experiments in understanding the turbulence generation process
near a wall, and in finding ways of interrupting it and of damping turbulence.

Moderate-pressure-gradient flows over smooth walls can be divided into three
distinct regions. The closest to the wall is a thin layer in which the rate of turbulent
energy production exceeds dissipation, and which exports part of this energy towards
the interior of the flow. Farthest from the wall there is a region in which dissipation
exceeds production, and turbulence is partly maintained by the energy transported
from the inner layers. In between, the logarithmic region can loosely be defined as a
layer of constant stress where production equals dissipation. It acts as a connection
between the two other regions, roughly comparable to the inertial range of scales in
the energy cascade of isotropic turbulence.

We will concern ourselves in this paper with the first of these layers, extending
approximately up to y+ = yuτ/ν ≈ 100. Wall units are defined in terms of the friction
velocity, uτ = (τ/ρ)1/2, where τ is the wall stress, and of the kinematic viscosity ν. It
includes the viscous sublayer, the buffer region, and the inner part of the logarithmic
layer.

It has long been understood that the near-wall layer is crucial to the dynamics
of attached shear flows, being the seat of the highest rate of turbulent energy
production and of the maximum turbulent intensities. It is a highly intermittent region,
with locally low Reynolds numbers, and dominated by intense interacting structures
(Robinson 1991). It is relatively poorly understood even though wall flows are among
the most technologically important in engineering, and have therefore been the subject
of extensive study (Schlichting 1968). A collection of papers summarizing recent
advances has been edited by Panton (1997). From the technological point of view,
this region controls the magnitude of the wall stress. If we take the energy dissipation
in the logarithmic region to be u3

τ/κy, the energy balance becomes (Townsend 1976)

u2
τ

∂U

∂y
=
u3
τ

κy
, U+ =

1

κ
log y+ + A. (1.1)

The first half of this equation depends only on generic properties of the turbulent
cascade. In particular the Kármán constant, κ ≈ 0.4, is probably universal. Integration
yields the logarithmic law in the second half of the equation, but the constant A has
to be determined independently. It controls the overall friction coefficient since, if we
assume that (1.1) holds up to the edge of the boundary layer, y = h, we obtain uτ
in terms of A and of the Reynolds number Reτ = huτ/ν. It is known that (1.1) only
applies above y+ ≈ 50, and that below that level the energy balance is not local,
and viscous dissipation cannot be neglected. It is this near-wall region that acts as a
boundary condition for the logarithmic law, and fixes A and the drag.

From the point of view of physics, the near-wall region is one of the few genuinely
different classes of turbulent flows, distinguishable from isotropic turbulence in the
same way that the study of solid surfaces is a different discipline from the study
of the solid state itself. One of the most interesting questions is whether its excess
of energy production implies that the near-wall region is self-maintaining, essentially
independent of the rest of the flow. If this were so it would be possible to simplify
the study of wall turbulence to a collection of independent, if interacting, parts. If the
regeneration mechanism turned out not to be intrinsically linked to the presence of the
wall, it could in addition be possible to use it as a prototype for the dynamics farther
into the flow, such as in the logarithmic layer. We will show both things to be true.
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The organization of this paper is as follows. The numerical technique is briefly
described first. The near-wall structures and the interactions that have been proposed
among them are summarized in § 3, which also discusses the general strategy of
our experiments. The existence of a near-wall turbulence cycle is proved in the next
section by numerical experiments designed to block outside influences. Which of two
proposed regeneration cycles is dominant in real flows is then tested in the same way.
It is shown, for example, that blocking one of the two cycles fails to decrease the
intensity of turbulence, while blocking the other leads to laminarization. The results
are discussed in a final section. An early report of some of the results in this paper is
Jiménez & Pinelli (1997).

2. The numerical technique
The experiments in this paper were conducted numerically in a turbulent channel.

The numerical method is essentially the same used by Kim, Moin & Moser (1987).
The equations are integrated in a box which is doubly periodic in the streamwise and
spanwise directions, of size Lx × Lz , and bounded by two parallel walls separated in
y by a distance 2h = 2. The spatial discretization is fully spectral, Fourier in (x, z)
and Chebychev in y. The nonlinear terms are dealiased in the two Fourier directions
by the 2/3 rule, but there is no dealiasing in y. Time discretization is third-order
Runge–Kutta for the nonlinear convective terms and implicit Euler for the dissipative
ones.

The equations are written in terms of the wall-normal vorticity ωy and of the
Laplacian of the wall-normal velocity, φ = ∇2v. They are summarized here, since they
will be subject to explicit manipulation later.

There are evolution equations for the Fourier components ω̂y,αβ(y) and φ̂αβ(y),

∂tω̂y,αβ = Ĥαβ + ν(∂2
y − α2 − β2)ω̂y,αβ , (2.1)

∂tφ̂αβ = Q̂αβ + ν(∂2
y − α2 − β2)φ̂αβ, (2.2)

where α and β are the wavenumbers in the x- and z-directions. The detailed form
of the right-hand sides can be found in Kim et al. (1987). Velocities are obtained
from the evolution variables using the continuity equation, except for the (0, 0) modes
which must be integrated separately.

No-slip and impermeability conditions are imposed at both walls for the velocities,
and reduced to conditions on φ and ωy by an influence-matrix technique. The (0, 0)
modes satisfy that the streamwise mass flux is constant in time, and that the spanwise
flux is zero. Some of the tangential boundary conditions will be relaxed later, but
impermeability, v = 0, is always preserved, providing an unambiguous definition for
the location of the wall. Experiments which relax the latter condition can be found,
for example, in Choi, Moin & Kim (1994) and Koumoutsakos (1997).

3. Near-wall structures
The dominant structures of the near-wall region are the streamwise velocity streaks

and the quasi-streamwise vortices. The former were the first ones to be recognized
(Kim, Kline & Reynolds 1971), and consist of long (x+ ≈ 1000) sinuous arrays
of alternating streamwise jets superimposed on the mean shear (see figure 6), with
an average spanwise wavelength z+ ≈ 100 (Smith & Metzler 1983). At the spanwise
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Figure 1. Schematic representation of the proposed mechanisms for turbulence production in
the near-wall region. Solid arrows represent generally accepted processes, while dashed ones are
uncertain, and are tested by the numerical experiments discussed in the text.

locations where the jets point forward, the wall shear is higher than the average, while
the opposite is true for the ‘low-velocity’ streaks where the jets point backwards. The
quasi-streamwise vortices are slightly tilted away from the wall, and each one stays
in the near-wall region only for x+ ≈ 200 (Jeong et al. 1997). Several vortices are
associated with each streak, with a longitudinal spacing of the order of x+ ≈ 400
(Clark & Markland 1971; Jiménez & Moin 1991). Some of them are connected to
the trailing legs of the vortex hairpins of the outer part of the boundary layer (Perry,
Henbest & Chong 1986), but most merge into disorganized vorticity after leaving the
immediate wall neighbourhood (Robinson 1991).

It has long been recognized that the vortices cause the streaks by advecting the
mean velocity gradient (Blackwelder & Eckelmann 1979). This process is independent
of the presence of the wall, as strongly suggested by the observation of streaks by
Rashidi & Banerjee (1990) and Lam & Benerjee (1992) near free-slip interfaces on
which a sufficiently high shear had been artificially imposed, and by Lee, Kim &
Moin (1990) in uniformly sheared flows.

Near a wall this process is such as to increase the mean shear, being the immediate
cause of the turbulent wall drag (Orlandi & Jiménez 1994). Many attempts to control
drag have therefore centred on weakening the quasi-streamwise vortices (Choi et al.
1994) and there is, for example, little doubt that the drag reduction afforded by riblets
(Walsh 1990) is due to the weakening of these vortices by the increase in spanwise
friction at the wall (Jiménez 1994).

While this part of the cycle is understood, there is less agreement on the mechanism
by which the vortices are produced. The main candidates are summarized in figure 1.

Soon after the velocity streaks were first observed, Kim et al. (1971) proposed that
their instability was involved in a turbulence production event. The argument was
made more specific by Swearingen & Blackwelder (1987), who studied particularly
strong streaks induced by Görtler vortices imbedded in a boundary layer, and noted
that the layers of wall-normal vorticity which separate the low- from the high-velocity
streaks are subject to inflectional instabilities. Although the vortices created by those
instabilities would be normal to the flow, they would soon be tilted forward and
intensified by the prevailing mean shear. This conceptual model has been elaborated
and used to explain several properties of disturbed boundary layers by Sendstadt &
Moin (1992), Jiménez (1994) and Hamilton, Kim & Waleffe (1995), among others.
More recently Schoppa & Hussain (1997) have noted that, because of the presence
of a mean shear, the inflectional instability does not generate wall-normal vortices,
and that the linear eigenfunctions already contain the alternating quasi-streamwise
structures which are found in the nonlinear stages of the flow. A similar inviscid
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instability model is behind the reduced dynamical system approximations of the wall
region proposed by Aubry et al. (1988) and expanded in the recent book by Holmes,
Lumley & Berkooz (1996), and is the essence of the quasi-linear wall layer models
proposed by the MIT group and summarized for example by Landahl & Mollo-
Christensen (1992). It is represented as cycle ‘S’ in figure 1, and will be referred in
this paper as the streak cycle. It can be summarized as the quasi-streamwise vortices
acting on the mean shear to create the streaks, which become inviscidly unstable and
eventually produce tilted streamwise vortices.

Another vortex regeneration mechanism, which does not explicitly involve the
streaks, was put forward by Smith et al. (1991), and in more detail by Brooke &
Hanratty (1993). It is known that, when a vortex approaches a no-slip wall, it induces
a layer of vorticity of the opposite sign which, under certain circumstances, may roll
into new vortices (Doligalski & Walker 1984; Orlandi 1990). The proposed cycle starts
when a streamwise vortex approaches the wall and creates in this way new vorticity
of opposite sign. The new vorticity, which is already predominantly streamwise, leaves
the wall under the induction of its parent, and is stretched and intensified by the mean
shear. The interaction generates local wall-normal velocities, and may lead directly
to the formation of new streaks. Note that this wall cycle (‘W’ in figure 1) is almost
two-dimensional in the cross-flow plane and, except for using the mean shear as an
energy source, depends only on the transverse no-slip condition at the wall, w = 0.
As in the previous case, this cycle has been observed in real flows, mainly as the
formation of secondary vortices near the tails of strong hairpins in otherwise laminar
boundary layers (Haidari & Smith 1994; Singer & Joslin 1994), but also in direct
simulations of turbulent channels at low Reynolds numbers by Brooke & Hanratty
(1993).

It is important to understand that the fact that both cycles occur experimentally
is not enough to decide which one of them, if any, is dominant in a turbulent
boundary layer. The observations show that the two mechanisms are possible but,
since the experiments involve artificial situations isolating partial aspects of the flow,
they cannot be used to decide whether any of them is relevant in the random
environment of fully developed turbulence, where they may have to compete with
other mechanisms. A better strategy is to start with a fully turbulent flow and to
remove one by one the events to be tested. Those which result in turbulence being
damped would then be shown to be important in its maintenance, while the others,
even if present, could be assumed to be secondary.

While this strategy is generally difficult to implement in the laboratory, it is easier
in numerical experiments which, as noted in the introduction, is one of reasons why
the latter are invaluable tools in the understanding of turbulence.

4. The existence of a cycle
4.1. Minimal channels

Consider for example the third possibility in figure 1, which is that no near-wall cycle is
important, and that vortices are formed directly by the intensification of perturbations
coming from the outer flow. This is clearly possible, and almost certainly happens
to a certain extent in all wall flows, as shown by the dependence of the near-wall
scalings on the bulk Reynolds number (Wei & Willmarth 1989).

A falsifying experiment to test the importance of this scenario, removing or weak-
ening the core flow, was first done by Jiménez & Moin (1991) in a set of simulations
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U0h/ν uτh/ν L+
x L+

z ∆+
x ∆+

y ∆+
z Nx Ny Nz U0t/h

4500 201 360 105 11.2 0.06 6.5 32 129 16 1200
9000 428 448 128 14.0 0.06 8.0 32 193 16 1100

18000 633 397 113 9.3 0.05 3.5 42 257 32 450

Table 1. Characteristics of minimal channels used in the discussion in § 4.1. U0 is the bulk flow
velocity, and h the channel half-width. Lx and Lz are the streamwise and spanwise lengths of the
periodic computational box. ∆x and ∆z the horizontal grid spacings after dealiasing, and ∆y the
distance to the wall from the first y grid collocation point. Nx and Nz are Fourier modes after
dealiasing. t is the time over which statistics are collected, after discarding the initial transient.

in which the spanwise and streamwise period of the boxes of a turbulent channel
were shrunk until they were reduced to the minimum values for which turbulence
survived. This ‘minimal’ unit, whose spanwise width is L+

z ≈ 100, is large enough for
the wall structures, but leaves no space for the larger eddies of the core region.

The magnitude of this effect depends on Reτ. The lateral extent ζ of the largest
flow structures can be estimated from the first zero of the spanwise correlation
function Ruu(z), which is given by Kim et al. (1987) as ζ+ ≈ 30 near the wall, and as
ζc/h ≈ 0.5 at the centre of the channel. The spanwise width of the minimal channels
is approximately three times this correlation length at the wall but, at the channel
centre,

Lz/ζc ≈ 200/Reτ, (4.1)

and the structures are increasingly constrained as the Reynolds number increases.
The maximum Reτ reached by Jiménez & Moin (1991) was 200, at which the

previous argument suggests that the minimal channel is already three times too
narrow for healthy core structures, and it is indeed clear in figure 9 of their paper
that the streamwise velocity fluctuations at the centre of the channel are lower than
those in a regular channel at the same Reynolds number.

The characteristics of turbulence near the wall remain essentially identical to those
of regular channels, showing that the properties of the wall flow are not heavily
dependent on those of the core, and that the former can be basically normal even if
the latter is highly damped, thus arguing against the ‘no-cycle’ scenario of figure 1.

Since the Reynolds numbers in Jiménez & Moin (1991) were marginal with respect
to the length ratio (4.1), the experiments are repeated here for a wider range of Reτ.
Three simulations are summarized in table 1. The r.m.s. velocity fluctuation profiles
are given in the left-hand sides of figure 2(b – d), whose right-hand sides contain
profiles from wide-channel simulations at similar Reynolds numbers. It is seen that,
although the longitudinal fluctuations are only weakly damped, the wall-normal and,
specially, the spanwise fluctuations are almost fully suppressed in the core of the
channel at the highest Reynolds numbers. Figure 2(a) shows the effect on the mean
velocity profiles, which become more and more similar to the laminar parabola as the
Reynolds number increases. This effect appears as a huge ‘wake’ component when
the velocity profiles are plotted in semi-logarithmic coordinates.

In all cases the wall region remains essentially identical to those of wide channels.
The resulting near-wall peak of the Reynolds stress induces boundary layers in the
mean velocity profile which are weaker but not less sharp than those of the regular
channels. The whole picture suggests a flow which is becoming laminar at its core
while the wall remains independently turbulent. Note in particular that the very
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Figure 2. (a) Mean streamwise velocity, and (b) streamwise, (c) wall-normal, and (d ) spanwise
velocity fluctuation profiles. The left-hand halves display the minimal channels in table 1, and the
right-hand halves display full-sized channels at comparable Reynolds numbers. , Minimal
channel at Reτ = 201; , Reτ = 428; , Reτ = 633. ◦ , Full channel simulation by
Kim, Moin & Moser (1987), Reτ = 180; ◦ , full channel simulation by Mansour, Moser &
Kim (1997), Reτ = 590.

narrow channel at the highest Reynolds number, Lz/ζc ≈ 1
3
, essentially prevents any

interaction between the walls.
A different view is obtained by plotting the vorticity fluctuations (figure 3). Their

near-wall profiles are still very similar to those of the wide channels, but there is
no damping of the vorticities in the core, and there is even a tendency for the
fluctuations in the narrow channels to be stronger than those in the wide ones. This
is easily explained once it is realized that the flow in the core of the narrow channels
is not really laminar, but just lacking in large scales, since the spanwise constraint
restricts the eddies to sizes similar to those near the wall. In wide channels the
standard scaling argument is that the length scale of the energy-containing eddies is
y, and that their velocity scales with uτ. Equating the rate of energy dissipation in
the large scales, u3

τ/y, with that in the small scales, νω2, leads to an estimate for the
vorticity fluctuations, ω+ 2 ∼ 1/y+. This agrees with figure 3(a,c,e), which is scaled in
wall units, and where all the vorticity profiles more or less agree. In figure 3(b,d,f ),
which is scaled in outer units, the wide channels do not collapse. The length scale y is
forbidden in the narrow channels above y+ ≈ 100, where even the energy-containing
eddies are restricted to sizes of the order of the spanwise numerical wavelength,
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Figure 3. (a,b) Streamwise vorticity fluctuations, (c,d ) wall-normal, (e, f ) spanwise; (a,c,e) are plotted
against distance in wall units and (b, d, f) in terms of outer flow units. Symbols as in figure 2.

z+ ≈ 100. The result of the energy balance is then that the vorticity should scale
as ω+ = O(1), independently of Reynolds number, and only weakly depend on y
through the dependence of u′. This agrees with the collapse of the narrow-channel
vorticities in the channel ‘cores’ in figure 3. Note that the ‘eddy viscosity’ resulting
from this estimate is O(uτ ν/uτ) = O(ν) which, even though not laminar, is constant
and explains the parabolic profiles in figure 2. This sheared turbulence, lacking an
energy cascade in the classical sense, is an interesting artificial system in its own right,
but its analysis is beyond the scope of this paper.

The results in this section show that a ‘normal’ outer flow is not needed for the
maintenance of near-wall turbulence, or even for defining its quantitative properties.
Note in particular that the trend to higher streamwise and spanwise vorticity fluc-
tuations at higher Reynolds numbers, which is present in the full channels, is also
present in the minimal ones, even if it is not obvious what a higher Reynolds number
means for the wall region in the latter. There is no Reynolds number effect in ωy ,
either in the minimal or in the full channels, and these two trends agree with the
corresponding ones for the streamwise and transverse velocities in figure 2.
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4.2. Explicit filtering

While the experiments in the previous section show that a normal core flow is not
needed to maintain wall turbulence, they, because of the presence of small-scale
fluctuations, do not answer the question of whether the wall can remain turbulent
with no input from the core, or of which is the minimum distance from the wall
over which fluctuations must be present before turbulence decays completely. The
latter can be estimated from the minimum by-pass transition Reynolds number for
boundary layers, whose ‘core flow’ is of course laminar. It is known that turbulent
boundary layers can be maintained above Reθ ≈ 200 (Corral & Jiménez 1994), which
corresponds to Reτ ≈ 100, and the threshold for channels, which have no laminar
outer flow, was found by Nishioka & Asai (1985) to be even lower, Reτ ≈ 50. Those
results suggest that the minimum thickness for a turbulent layer to be self-sustaining is
between δ+ = 50 and 100. This is what is usually considered to constitute the viscous
and buffer layers, and would mean that an isolated near-wall region is self-sustaining.

Berstschy, Chin & Abernathy (1983) showed that the statistics of the velocity
fluctuations in a inclined water table of depth h+ ≈ 100 were similar to those in fully
developed boundary layers, and noted that this suggested that the effect of the outer
flow was not crucial for the near-wall region.

This can be tested directly by a more drastic modification of the evolution equations
than the one in the previous section. In the new experiment the flow is run in a
relatively wide periodic box, L+

z ≈ 300, but all the fluctuations are explicitly filtered
above a given distance. Consider a generic numerical time step for either (2.1) or
(2.2), which can be written as

q(y, t+ ∆t) = q(y, t) + ∆t h(y), (4.2)

where q is either φ̂αβ or ω̂y,αβ , and h is the appropriate right-hand side. We substitute
it by

q(y, t+ ∆t) = [q(y, t) + ∆t h(y)]F(y), (4.3)

where

F(y) = 1
2

[
1− tanh 4(y2/δ2 − 1)

]
. (4.4)

It is clear that, for y � δ, the filter is F(y)� 1 and the fluctuations are fully damped,
but the effect is actually stronger. Consider the case F(y) = 1 − ∆t µ, with µ = O(1).
The step (4.3) can then be expanded as

q(t+ ∆t) ≈ q(t) + ∆t (h− µq), (4.5)

which is consistent with

∂tq = h− µq. (4.6)

The filter acts as a dissipation, and fluctuations are damped if µ > O(h/q) =
O(U/L), where U and L are characteristic longitudinal scales. This happens as long
as 1 − F(y) > O(U∆t/L) and since, from numerical considerations, the time step is
∆t = O(∆x/U) = O(L/UNx), where Nx is the streamwise number of grid points,
the argument implies that fluctuations are damped wherever F(y) < 1 − O(N−1

x ). In
our simulations Nx = O(100), and the filter is effective approximately as long as
F(y) < 0.99, or y/δ > 0.65.

For the experiments in this section several filters were tried with δ > 0.85, but
only the results with the narrower filter are described. Although the search for the
laminarization threshold was not refined with care, this is probably close to the
narrowest possible filter for the conditions of our channel, whose initial Reynolds
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Figure 4. Explicitly filtered channel. Lines with symbols correspond in all cases to the full channel
by Kim et al. (1987). (a) , Mean streamwise velocity; , filter; , laminar parabola.
(b) , Mean streamwise velocity in wall units; , 2.5 log y+ + 5.5. (c) Turbulent velocity
fluctuations, in wall units: , u′; , v′; , w′. (d ) Turbulent vorticity fluctuations, in
wall units: , ω′x; , ω′y; , ω′z .

number was Reτ ≈ 200. The fluctuations in the top half of the channel were fully
damped in all cases. After a long transient, in which the damped region adapts itself
to a laminar profile and absorbs a large fraction of the total volume flux, the flow
stabilizes to a relatively low Reτ ≈ 110, based on the turbulent wall and on the
channel half-width. The Reynolds number based on the filter height is uτδ/ν ≈ 95,
and all the fluctuations are effectively damped above y+ ≈ 60. Because of the initial
drop in the wall shear, the final size of the computational box is only moderate in wall
units, L+

x ×L+
z = 700×350, and the numerical resolution is excellent, ∆+

x ×∆+
z = 8×4

after dealiasing (Ny = 97).
The near-wall turbulence survives even in the presence of the severe truncation,

and the statistics in figure 4 are compiled over a statistically stationary period of
U0t/h ≈ 400 (u2

τt/ν ≈ 1900), over which the stress profile is linear.
The mean velocity profile is given in figure 4(a), together with the filtering function

and a best-fit parabola to the laminar region. There are no Reynolds stresses in the
filtered part, but the velocity takes a roughly turbulent profile near the wall. In fact,
as shown in figure 4(b), the near-wall velocity agrees reasonably well with that of
regular channels at moderate Reynolds numbers and, even in such a heavily truncated
flow, it develops an incipient logarithmic region. The same robustness is shown in
figure 4(c,d) for the velocity and vorticity fluctuations. All the fluctuations are now
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absent outside the wall region, but the near-wall profiles are reasonably similar to
those of regular channels. This is specially true for the longitudinal velocity, and for
the wall-normal vorticity, while the transverse velocities and the longitudinal vorticity
are more strongly affected. This is consistent with the results in the previous section,
and with the Reynolds number dependence of the different quantities. This suggests
either that the streaks are nonlinearly saturated features of the wall region, or that,
since they contain most of the fluctuating kinetic energy, they control the skin friction.
In the latter interpretation the friction velocity would be proportional to the peak of
u′ rather than vice versa, but the result would be the same. The streamwise vortices,
probably because of their smaller dimensions and less energetic velocities, are more
easily modified by the interactions with the rest of the flow. The observation that the
transverse velocity fluctuations are less robust than the longitudinal ones was already
made, on the basis of control experiments, by Jiménez (1994).

The result relevant to our original question is that, although there are no fluctuations
for y+ > 60, the near-wall flow is essentially normal and self-sustaining, showing that
this region is able to function autonomously and does not depend on perturbations
from the core flow.

4.3. Flow dynamics

As discussed in § 3, the mechanism most commonly proposed for the generation of the
quasi-streamwise vortices in the near-wall region is an inflectional instability of the
streaks, although the details differ among authors. Even though it is not the purpose
of this paper to clarify the nature of those instabilities, it is interesting to note that
the filtered system discussed in this section provides an ideal laboratory in which
to study them in ‘pure’ form, because of the absence of complicating perturbations
from the outer flow. The fact that it is not a minimal channel, in the sense that
several structures are present at the wall at the same time, gives some confidence that
the mechanisms are not contaminated by spurious periodicities. Different instability
processes can in fact be seen in an animation of the flow. An example is given in
figure 5 which shows a single streak going through the ‘blooming’ process described
by Jiménez & Moin (1991), and more recently by Jeong et al. (1997) and Schoppa
& Hussain (1997). The low-velocity streak, which is visualized here by an isosurface
of the magnitude of the perturbation vorticity vector, is first shown at a temporal
minimum of the global friction coefficient. The streak is then essentially straight,
but soon becomes unstable to a bending instability and breaks near the centre of
the box into a pair of oblique vortices. This is accompanied by a rapid increase
in wall friction. The figure is spatially periodic in the streamwise direction, but not
spanwise. The full box contains three streaks, of which only the central one is shown
(figure 6).

Figure 5 roughly corresponds to figure 25 of Jiménez & Moin (1991), and highlights
the basic similarity of the filtered and unfiltered flow fields. The initial phases of the
two bursts are identical, and the main differences appear when the vortices reach a
level of about y+ = 50. In unfiltered flows the vortices keep rising and merge into
the logarithmic region, but we have seen that the filter acts here as a viscosity that
increases sharply above that level, and the present vortices never penetrate the highly
viscous region. That they are nevertheless formed suggests again a locally unstable
flow that exports energy away from the wall, rather than one depending on outside
influences to regenerate. The advection velocity of the structures in figure 5 is almost
identical to that found by Jiménez & Moin (1991) or by Kim & Hussain (1993) below
y+ ≈ 20.
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Figure 5. Explicitly filtered channel, as in figure 4. The low-velocity streak is visualized as the
|ω′|+ = 0.25 isosurface of the perturbation vorticity magnitude. The flow is from left to right and
the figure looks into the wall. From top to bottom, U0t/h = 0, 15, 19.5, 25. The image is advected
with a velocity Uc = 0.37U0 = 9.7uτ, to keep the central structure approximately steady. The size
of the displayed domain is 700× 115 wall units.

5. The streak cycle
We have seen in the previous section that there is an autonomous regeneration

mechanism in the near-wall region, and we have presented tentative evidence that a
sinuous instability of the streaks is involved, at least occasionally. We will not attempt
in this paper to separate the contributions of the different possible instability modes
but, in the spirit of the remarks in § 3, we will try to show that the presence of
coherent streaks is a necessary ingredient for the regeneration of the quasi-streamwise
vortices, as sketched in the streak cycle in figure 1. This we will do by eliminating
the streaks without directly perturbing the vortices. If the streak cycle were in fact
the key regeneration mechanism, this would prevent the production of new vortices,
the existing ones would eventually decay due to viscosity, and turbulence would
either be damped or decay altogether. On the other hand, if this were not the case,
turbulence would either be enhanced or remain essentially unaffected. We will show
that the former is true and, in the process, we will give bounds for the location of the
important mechanism. In addition we will also be able to show that the generation of
coherent streaks by wall-normal advection of the velocity profile is a necessary part
of the generation cycle.
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Figure 6. Transverse section through the centre of the box in the first frame of figure 5. The streak
shown in that figure is the one near z+ = 200. Perturbation velocity isolines u′+ = −7.5 (0.5) 2.5.
Dashed contours are u′ < 0.

5.1. The definition of a streak

Consider a numerical simulation of a channel in which the length of the computational
box is short with respect to the typical longitudinal extent of streaks. It was shown
by Jiménez & Moin (1991) that turbulence can be sustained in boxes longer than
about L+

x ≈ 350, while natural streaks have longitudinal coherence lengths which are
several times longer. The present experiments are run in doubly periodic boxes of size
L+
x × L+

z ≈ 500× 300, at initial Reynolds numbers Reτ ≈ 180–200. Each wall region
therefore contains two or three velocity streaks which extend over the whole length
of the box, each of which has associated with it on the average one streamwise vortex
of each sign. The box is wide enough to contain the large eddies of the core region,
and the one-point statistics of the unmodified flow agree well with those in larger
computational boxes.

Since streaks span the length of the box and are roughly parallel to the mean
flow, they can be approximately represented by that part of the streamwise velocity
u which depends on the transverse coordinates, y and z, but which is independent of
x. Moreover, since we are only concerned with the spanwise modulation of u, we can
define a ‘streak component’ as the streamwise average of ∂u/∂z (figure 7),

Ωy(y, z) = L−1
x

∫ Lx

0

∂u/∂z dx = L−1
x

∫ Lx

0

ωy dx, (5.1)

and decompose ωy into ‘streak’ and ‘incoherent’ components,

ωy(x, y, z) = Ωy(y, z) + ω̃y(x, y, z). (5.2)

The assumption behind the streak cycle is that the presence of the streak component
(5.1) is responsible for the regeneration of the streamwise vortices, and that we should
be able to manipulate wall turbulence by acting on it. Two observations are important.
The first is that Ωy does not contribute to the continuity equation, so that we can
modify it without directly perturbing the transverse velocities. The second is that the
incoherent component still contains a large part of the energy of the longitudinal
velocity fluctuations (figures 8 and 11), although its longitudinal coherence length is
only about half the length of the full box.

5.2. Damping the streaks

The simplest experiment is to damp the streak component completely by multiplying
it by a filter function below a given distance from the wall. The equations of motions
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Figure 7. Definition of streaks: (a) the streamwise velocity in a plane y+ = 30, with its streamwise
mean represented on the right; (b) the corresponding normal vorticity. Its streamwise mean value
is our definition of ‘streak’. The flow is from left to right, and lighter shades correspond to higher
values, as in the grey level scale in figure 8. Reτ = 190.

are integrated as usual, but Ωy is substituted by

Ωy → ΩyF(y),

where

F(y) = 1
2

[
1 + tanh 4(y2/δ2 − 1)

]
. (5.3)

This filter function leaves unchanged the upper wall, while damping the streaks at
the lower one. The evolution of the friction coefficient at the filtered wall is given in
figure 9(a), and it is clear that the flow laminarizes at the lower wall.

It is possible, by changing δ, to test which is the region in which the instability of
the streaks gives rise to the vortices. Consider figure 9(b), which displays the effect
of changing the height of the filter in (5.3). There is a threshold δ+ ≈ 20 below
which filtering is not effective, and the flow laminarizes completely for δ+ > 60.
The relatively smooth evolution of the skin friction with the filter height is in fact
misleading. It can be seen from the velocity and vorticity fluctuation profiles in
figure 10 that laminarization is a sudden effect that happens only when δ+ > 60. The
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Figure 8. Incoherent streamwise velocity corresponding to the field in figure 7, after the streaks
have been filtered away. The grey level scale is the same as in figure 7.
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Figure 9. (a) Time evolution of the skin friction for a channel in which the streaks have been
filtered below δ+ = 75: , unfiltered wall; , filtered wall. Initial conditions are a fully
developed channel with Reτ = 200. (b) Reduction in the friction coefficient of the filtered wall with
respect to a natural channel, as a function of the filter height. The solid circle corresponds to (a).

flow for narrower filters, although different from a natural channel, is still essentially
turbulent.

An argument equivalent to that in (4.6) shows that the streaks are killed in this
case below y ≈ δ (see figure 11), so that figure 9(b) implies that the flow survives
as long as some of the streaks are retained below y+ ≈ 60. This is the same height
found in the previous section, below which the wall can survive autonomously, and
suggests the strong result that a full regeneration cycle in the region around y+ ≈ 50
is both a necessary and a sufficient condition for the survival of wall turbulence. Note
in particular that filters with δ+ < 60 modify the behaviour of the wall, but have
little or no effect on the turbulence generation cycle, reinforcing the conclusion that
it resides away from the wall, rather than on it.

The last experiment in this series is shown in figure 11. The main drawback of the
previous tests is the short streamwise length of the box, which is near the minimum
threshold for flow survival found by Jiménez & Moin (1991). The streaks in longer
boxes cannot be as easily defined as in (5.1), since they wander laterally even if they
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Figure 10. Dependence of (a) the streamwise velocity fluctuations, and (b) the streamwise vorticity,
for channels with filtered streaks, as a function of filter height: , δ+ = 24; , 33; ,
44; , 56; , 70.

0.2

0.1

0 1 2

1

0

F
(y

)

y/h

m 
x

′ y/
u s2

Figure 11. Wall-normal vorticity fluctuations for a large channel in which the first two longitudinal
Fourier modes of ωy are filtered at one wall. δ+ = 70. , Full ωy; , zeroth Fourier mode;

, first Fourier mode; , zeroth and first Fourier modes; , filter.

stay coherent, but it is interesting to determine over what distance their coherence
has to be destroyed before the cycle is disrupted. This was done by experimenting on
a larger box, L+

x × L+
z = 1200× 600.

The way that the decomposition (5.2) is implemented numerically is by defining Ωy
as the sum of all the Fourier modes of ωy whose streamwise wavenumber is α = 0.
This procedure fails to laminarize the larger box, clearly because it leaves coherent
streaks of length L+

x /2 ≈ 600, which can still drive the cycle. Defining Ωy to include
also the next Fourier mode, α = 2π/Lx, reduces the streamwise coherence length to
about L+

x /4 ≈ 300, and laminarizes the flow. Note that the coherence length in the
short-box experiments described earlier was about 200 wall units. This suggests that
the minimum streak length needed to sustain the cycle is between 300 and 400 wall
units, which agrees with the estimate in Jiménez & Moin (1991), and corresponds to
the average streamwise distance between vortices of the same sign in natural boundary
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Figure 12. (a) Decay of , 〈ωx〉; and , 〈ωy〉, in the filtered channel of figure 9.
(b) Evolution of 〈ωx〉, compared to the prediction for purely viscous decay. The dashed line is
(5.5) for R+(0) = 15.8. The vorticity norm used is defined in (5.4).

layers. An estimate of the fraction of the wall-normal vorticity, and therefore of the
streaks, contained in each of the Fourier modes, can be obtained from the behaviour
near the unfiltered wall of the different profiles in figure 11.

The structure of the cases in which the filter is too narrow to laminarize the flow
deserves some discussion. In figure 10, the peak of the velocity fluctuation is reduced
in all cases to about one half of its natural value. This is not surprising at first sight,
since the location of this peak in natural flows is near y+ = 15, which is within even
the lowest filter in the figure. This simple explanation is weakened by the behaviour
of the streamwise vorticity in figure 10(b). Even if the vorticity peak is also within
the region in which the streaks are being filtered, at least for the wider filters, the
fluctuations of ωx are enhanced, rather than suppressed. This suggests a dynamic
rather than a kinematic explanation. The effect of the filter is to make the streamwise
velocity uniform, which is usually segregated into fast and slow regions by the streaks.
The vortices which create the streaks feed on this segregated sublayer, and only have
to maintain the velocity difference, rather than create it anew in each case. This is
probably the reason why the streaks are longer than the vortices. Any mixing of
the streamwise velocities, even very close to the wall, apparently interferes with this
process, and reduces the streak intensity by forcing each vortex to create its own local
velocity differences.

More puzzling is the enhancement of the streamwise vortices, which is observed
almost up to the threshold at which they stop being created and the whole process
collapses. This is a point which needs further investigation, which will not be attempted
here, but it is clear that the eventual collapse of the vortices is sudden, and more
likely to be associated with the failure of a particular link in the regeneration cycle
rather than with the cumulative effect of stronger filtering.

That the decay of the streamwise vortices is not a direct effect of the filtering can
shown by considering figure 12(a), which presents the decay of an integral measure
of the ωy and ωx fluctuations, defined by its L2 norm in

〈ω〉2 =

∫ y+=75

0

ω2 dx dy dz. (5.4)

While 〈ωy〉 drops immediately as the coherent component is filtered away, the stream-
wise vorticity 〈ωx〉 is unaffected for a while and only later begins to decay.
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This decay corresponds to the viscous diffusion of individual streamwise vortices,
after an initial period in which the existing vortices continue to evolve for some time
under the effect of the mean shear. Their vorticity decays after that, and their radii
grow. Under the assumptions that no new vortices are generated to replace the old
ones, that no vorticity cancellation takes place, and that the interaction with the wall
can be neglected, the vorticity profile of each vortex is Gaussian, and its radius grows
like R2 = 4ν(t+ t0), for some virtual time origin t0. Since the circulation of each vortex
remains constant, its peak vorticity decays as ω ∼ R−2, and the norm (5.4) behaves as
〈ωx〉2 ∼ ω2R2 ∼ R−2. It follows from straightforward computation that (5.4) satisfies

〈ωx〉2(0)/〈ωx〉2 = 1 + 4νt/R(0)2, (5.5)

which only depends on the radius R(0) of the vortices at the beginning of the decay.
This law is tested in figure 12(b), and represents reasonably well the evolution of the
streamwise vorticity. The implied radius, R+(0) ≈ 16, is in good agreement with the
estimates of Kim et al. (1987) for the vortices of the wall region.

5.3. Damping the source term

The experiments described in the previous section strongly suggest that the streaks
are involved in the generation of the streamwise vortices, and in the maintenance
of turbulence near the wall. It could however be argued that the filtering process
somehow interferes with the flow, and could damp the vortices by a different, but
still direct, mechanism. In particular, filtering the streaks results in some immediate
decrease of the energy of the longitudinal velocity fluctuations, and this effect might
reduce some local Reynolds number below a sustainable level.

The experiments in this section are intended to test this question by damping the
source term for the generation of the streak component, instead of the component
itself. The evolution equation for Ωy can be written as

∂tΩy = ∂z(g1 v ωz − g2 wωy) + ν∇2Ωy, (5.6)

where () is the streamwise averaging operator in (5.1). The term multiplied by g1

represents the advection of the spanwise vorticity by the wall-normal velocity, and
is the one usually cited as being involved in the generation of the streaks from the
mean velocity gradient. It is represented as the solid right-going arrow in figure 1.
The term multiplied by g2 represent the lateral advection of the normal vorticity by
the spanwise velocity. In a natural flow g1 = g2 = 1, but in numerical experiments
either one of them can be substituted by a filter

g(y) = 1− σ

2
+
σ

2
tanh 4(y2/δ2 − 1), (5.7)

which damps the corresponding term by a factor 1− σ below y ≈ δ. In this way the
streaks are not filtered directly, but they stop being generated, and will eventually
decay by the effect of viscosity. The whole process is milder than direct filtering of
the flow field, and has less chance of producing unintended side effects.

The results are broadly consistent with the standard interpretation of the streak
cycle. Damping g2 has almost no effect on the flow, while damping g1, and therefore
the generation of the streaks by the vortices, has the same effect as damping the
streaks themselves. Figure 13(b) shows the skin friction reduction, as a function of
σ in g1, for two filter heights. The narrow filter only partially laminarizes the flow,
while the flow due to the broader one is essentially laminar. The time evolution of
the skin friction in one of the partially laminarized cases is given in figure 13(a), and
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Figure 13. (a) Time evolution of the skin friction for a channel in which the source term of the
streaks has been filtered with δ+ = 44, σ = 0.9: , natural wall; , filtered wall. Initial
conditions are the same as in figure 9. (b) Reduction in the friction coefficient of the filtered wall
with respect to the natural channel, as a function of the filter fraction: , δ+ = 44; ,
δ+ = 85. The solid circle corresponds to (a).

Figure 14. Sketch of the vortex regeneration from secondary vorticity. Time is from right to left,
and shading labels vorticity sign.

is intermittent. This is true to some degree of all the partially laminar cases in this
set of experiments, and contrasts with the case in which the streaks were explicitly
filtered, suggesting that, although advection by the streamwise vortices is the primary
mechanism for streak formation, weaker ‘bypass’ mechanisms take over when it is
removed.

No attempt has been made here to clarify the bypass mechanism. Jiménez & Moin
(1991) observed somewhat similar transition events in cases in which flow at one wall
of their minimal channels had decayed to laminar, and report that the transition was
due to a single large Λ-vortex. In that case flow at both walls stayed turbulent for
some time, and only later did one of them relaminarize. In the present case all the
turbulent intensities briefly reach their turbulent level during the short intermittent
peak, but the regular cycle has been interrupted, and the wall flow decays immediately.

6. The wall cycle
The main alternative to the streak-dependent generation cycle discussed up to now

is the wall cycle, which was described in § 3 and which is sketched in figure 14. The
key event in this case is the formation of secondary streamwise vorticity at the wall,
which in turn depends on the transverse no-slip boundary condition, w = 0. The
amplification of turbulent fluctuations depends, for all plausible scenarios, on the
mean velocity shear (Perot & Moin 1995), which is maintained by the streamwise
no-slip condition, u = 0. In real flows both conditions are satisfied together at the
wall, but in numerical simulations they can be imposed independently.
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Figure 15. Time evolution of the skin friction for a turbulent channel in which the transverse no-slip
condition at one wall has been substituted by ∂w/∂y = 0: , no-slip wall; , transverse
slip wall. Initial conditions are the same as for figure 9.

A numerical experiment in which the wall cycle was tested by manipulating these
boundary conditions was presented in Jiménez (1992), where the transverse no-slip
condition was substituted by a zero-stress one, ∂w/∂y = 0. It is analysed here in more
detail after being repeated at somewhat higher resolution and Reynolds number.
Also, contrary to the experiment in Jiménez (1992), where the slip condition was only
imposed approximately, the present one is implemented exactly. If the wall cycle were
the dominant turbulence regeneration mechanism, a transverse slip condition would
inhibit the formation of new streamwise vorticity, turbulence would be weakened, and
the skin friction would drop with respect to that of a ‘natural’ flow. Conversely, if
the effect of secondary vorticity were not important, the main effect of the transverse
no-slip condition would be to weaken the streamwise vortices through viscous friction
at the wall. Removing the friction would not affect the streamwise vortex formation
mechanism, but the transverse dissipation would decrease. The vortices would then
become stronger, increasing both the turbulent intensities and the skin friction.

The result of the experiment is shown in figure 15, which compares the time
evolution of a natural turbulent wall with that of a transverse free-slip one. In
disagreement with the wall model for vortex generation, the skin friction increases
by a factor of about 1.45 in the latter. In Jiménez (1992) the initial Reynolds
number was lower, Reτ = 120, and the resolution poorer, and the increase in the
skin friction was larger, cf/cf0 ≈ 1.8. On the other hand, a similar experiment using
good resolution with a finite differences numerical code and a comparable Reynolds
number, Reτ = 180, was done by P. Orlandi (private communication) with results
similar to the ones obtained here, a drag increase of 1.65.

A series of related experiments, in which the transverse and longitudinal no-slip
conditions were decoupled and applied at different locations, was presented in Jiménez
(1994). Defining the wall, y = 0, as the location at which u = 0, the transverse no-slip
condition, w = 0, was approximately enforced at y = δ. The free-slip experiment
mentioned above is equivalent to the limit δ → −∞. In agreement with the previous
interpretation of the regeneration cycle, turbulence was weakened when the transverse
no-slip condition was located inside the channel (δ > 0), in which case the transverse
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Figure 16. (a) Streamwise velocity, and (b) streamwise vorticity fluctuations in: ,
a natural channel and , the channel in figure 15, in which the boundary condition at the lower
wall has been substituted by spanwise free-slip. Normalization is done in wall units corresponding
to the natural channel.

velocities due to the vortices are more strongly damped than in the natural case. The
opposite was true when δ < 0, and it was shown that the resulting variation of the
friction coefficient agrees quantitatively with the interpretation of the experimental
results from surface-mounted riblets (Bechert, Bartenwerfer & Hoppe 1989; Walsh
1990) as an offset between the longitudinal and transverse boundary conditions
(Taylor 1971; Bechert & Bartenwerfer 1989; Luchini, Manzo & Pozzi 1991).

These results strongly suggests that the wall cycle is not dominant in the regen-
eration of turbulence in the wall region, and that the main effect of the transverse
no-slip condition at the wall is to limit the vortex intensity through viscous dissi-
pation. This is confirmed by figure 16(b), which shows profiles of the streamwise
vorticity fluctuations for the slip and natural channels. It is clear that the streamwise
vorticity has become much stronger near the transverse-slip wall, and that its peak
has moved closer to it. The latter suggests that the distance of the vortices from the
wall in natural channels is controlled by the viscous cancellation of vorticity by the
transverse no-slip condition, which also probably controls its maximum amplitude.

It is interesting to note in figure 16(a) that, even though the streamwise vortices
are much stronger at the transverse-slip wall than at the natural one, the magnitude
of the streamwise velocity perturbations increases only slightly. This robustness of
the amplitude of the streaks to large perturbations in their forcing has already been
noted in some of the experiments discussed above, as well as in Jiménez (1994) and,
as already mentioned, suggests that they are nonlinearly saturated structures.

7. Conclusions
The main conclusion of this paper is the confirmation that near-wall turbulence is

maintained by a cycle which is local to the region below y+ ≈ 60 and above y+ ≈ 20,
and which can survive without any input from the core flow. The characteristics
of the local turbulence at this ‘isolated’ wall is essentially the same as in regular
flows. We have shown that both the quasi-streamwise vortices and the presence of
the longitudinal velocity streaks are important for the cycle. By selectively removing
different links in two proposed regeneration cycles, we have shown which of those
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links are important in natural flows and which ones are not, at least at the moderate
Reynolds numbers of our simulations.

We have thus confirmed that the streamwise vortices extract energy from the mean
flow to create alternating streaks of longitudinal velocity, and that these streaks in
turn give rise to the vortices, presumably by inflectional instabilities which require a
streamwise coherence length of the order of y+ = 400. The alternative possibilities,
that the vortices are self-regenerating from secondary vorticity at the wall, or that
turbulence is fed by perturbations from the outside flow, have been shown not to be
dominant in real turbulent flows, at least at the Reynolds numbers of our simulations.

We have emphasized that these results do not imply that those alternative mech-
anisms are not active in the flow. They have all been observed to some extent by
previous investigators. The right conclusion is that, in real flows in which there is
competition among different mechanisms, the ones in the streak cycle defined in fig-
ure 1 overwhelm the others, which are weaker or slower. The result is that, when the
former are artificially inhibited, the flows decays or is severely damped, while the same
is not true for the latter. On the other hand, when the cycle was inhibited by damping
the source term usually responsible for streak formation, it became intermittent, with
brief bursts of turbulent activity separated by longer laminar periods. This suggests
that, if the faster cycle is suppressed, some of the weaker mechanisms can act and
maintain the flow at a lower level of activity.

A related question is whether the present results can be extended to Reynolds
numbers much higher than those in our experiments. We have already noted in § 4.1
that near-wall statistics are not completely independent of the Reynolds number,
and that this implies some form of interaction with the core flow. Since we have
established that the cycle described here is autonomous, in the sense that it self-
maintains in the absence of any outer flow, the Reynolds number effect presumably
points to contributions from other mechanisms, either from those which we have
shown here to be unimportant at low Reynolds numbers, or from others which
have not been considered at all. As an example, the striking absence of hairpin
vortices in the autonomous cycle in § 4.2 does not imply that there are no hairpins
in wall turbulence, since they have been described often, but that the streak cycle is
independent of them.

On the other hand the turbulent statistics at Reynolds numbers comparable with
ours were shown by Kim et al. (1987) to be close to those at higher Reynolds
numbers, giving some weight to the claim that the present results capture the essence
of near-wall dynamics. The situation is similar to that of a machine constructed from
several mechanisms. We have isolated a particular mechanism near the wall, we have
shown that it can run by itself, and that it accounts for a substantial part of the
statistics of the flow as a whole. This does not imply that it is the only mechanism
in the flow, or even that it is independent of everything else in real situations, but it
simplifies the conceptual model of the flow by letting us study it as a collection of
several, even if doubtlessly interrelated, parts.

That the main regeneration cycle resides above the viscous wall layer suggests that
a similar mechanism, at a larger scale and involving fully turbulent structures, may
be active in other shear flows, and in particular in the logarithmic region. Large-scale
structures similar to streaks but well beyond the near-wall region, have been observed
in boundary layers on beaches (Jiménez, personal observation), snow fields (R. J.
Adrian, private communication) and in hurricanes (Wuman & Winslow 1998).

We have shown that the generation cycle can be interrupted numerically at various
places, leading to the decay of turbulence and to eventual laminarization. Most
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previous attempts to understand drag reduction have been directed towards weakening
the streamwise vortices, and thus presumably their effect in generating the streaks.
This is a valid procedure which is most probably behind the success of riblets and
of some of the closed-loop control experiments by Choi et al. (1994) and Jiménez
(1994). It has the practical disadvantage that, since the vortices are relatively short
in the streamwise direction, detection and control have to be fast and local. We have
shown that an alternative strategy is to weaken or decorrelate the streaks themselves
which, being longer, might be easier to detect and act upon. Some applications of
this idea to turbulence control were discussed by Jiménez & Pinelli (1997).

As noted in § 3, other groups have proposed regeneration mechanisms that fall
within our description of the streak cycle, although they differ in detail from one
another. The numerical experiments discussed here are too rough to distinguish
among them. The purpose of the present paper was from the beginning to prove
that a self-sustaining cycle exists, and to identify its elements. This was achieved, but
any discussion of particular mechanisms beyond what we have discussed up to now
would either be unrelated to our work, or speculative.

The final point of this paper is a methodological one on the optimum use of
numerical experiments in exploring the physics of turbulence. We have shown that
numerics can be profitably used in ways which do not necessarily aim to duplicate real
experiments, and that it is precisely the ability of numerical techniques to simulate
‘impossible’ physics that makes them a tool of choice in unravelling the physics of
complex systems.

This work was supported in part by the Spanish CICYT under contract PB95-
0159, and by the Centre for Turbulence Research. A. P. was supported by a HCM
postdoctoral fellowship from the European Commission, and by CICYT. We thank R.
Moser for providing the unpublished vorticity fluctuation data for the high Reynolds
number full channel in figure 3.

REFERENCES

Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the
wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173.

Bechert, D. W. & Bartenwerfer, M. 1989 The viscous flow on surfaces with longitudinal ribs. J.
Fluid Mech. 206, 105–129.

Bechert, D. W., Bartenwerfer, M. & Hoppe, G. 1989 Turbulent drag reduction by nonplanar
surfaces – A survey on the research at TU/DLR Berlin. In Structure of Turbulence and Drag
Reduction (ed. A. Gyr), pp. 525–543. Springer.

Bertschy, R., Chin, R. W. & Abernathy, F. H. 1983 High-strain-rate free-surface boundary-layer
flows. J. Fluid Mech. 126, 443–461.

Blackwelder, R. F. & Eckelmann, H. 1979 Streamwise vortices associated with the bursting
phenomenon. J. Fluid Mech. 94, 577–594.

Brooke, J. W. & Hanratty, T. J. 1993 Origin of turbulence-producing eddies in a channel flow.
Phys. Fluids A 5, 1011–1021.

Choi, H., Moin, P. & Kim, J. 1994 Turbulent drag reduction: Studies of feedback control and flow
over riblets. J. Fluid Mech. 262, 75–110.

Clark, J. A. & Markland, E. 1971 Flow visualization in turbulent boundary layers. Proc. ASCE,
J. Hydraul. Div. 97, 1635–1664.
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